9412, 7619, 5827, 34287); ¹H NMR (CDCl₃) δ 11.66 (s, 1 H, CHO), 9.55, 9.33, 8.68 (all s, 3 H, meso H), 4.75 (m, 1 H, 2-H), 4.12 (q, 2 H, CH₂ of ester), 3.70 (m, 12 H, CH₂ of peripheral ethyl), 2.67 (m, 4 H, CH₂ of 1,2-ethyl), 1.70 (t, 21 H, CH₃ of peripheral ethyl), 1.13 (t, 3 H CH₃ of ester), -0.46 (t, 3 H, CH₃ of 3-ethyl); mass spectrum, m/e (relative intensity) 664 (M⁺, 12), 604 (11), 563 (41), 548 (100). Anal. Calcd for C₄₁H₅₂N₄O₄·H₂O: C, 72.14; H, 7.92. Found: C, 71.86; H, 8.01.

Hydrogenation of Purpurin 11. Palladium on charcoal (10%) (20 mg) was added to a stirred solution of purpurin 11 (100 mg) in tetrahydrofuran (20 mL) containing triethylamine (2 drops) and the resulting mixture hydrogenated at room temperature, under a slight positive pressure. After 5 h, the reaction mixture was filtered and the clear solution obtained vigorously stirred in air for 2.5 h. After complete oxidation of the intermediate porphyrinogen, indicated by a brown-colored solution and followed by measuring the intensity of an absorption at 660 nm in the visible spectrum of the solution, the solvent was removed in vacuo and the residue chromatographed on silica with 1% methanol in dichloromethane for elution. The major blue band was collected, the solvent removed, and the crude product crystallized from dichloromethane-methanol to give brown microprisms of 12. (72 mg, 72% yield): mp 142–145 °C; vis λ_{max} 403, 500, 535, 558, 610, 660 nm (ϵ 114 650, 23 532, 5662, 4246, 8493, 39 455); ¹H NMR $(CDCl_3) \delta$ 9.55, 8.68 (both s, 2:1, 3 H, meso H) 5.08-4.87 (m, 3 H, isocyclic CH₂, H), 4.70 (t, 1 H, 2-H), 4.45 (t, 2 H, CH₂ of ester), 3.80 (t, 12 H, CH₂ of peripheral ethyl), 2.90, 2.84 (m, 4 H, 1,2-ethyl), 1.74 (m, 21 H, CH₃ of peripheral ethyl), 1.54 (t, 3 H, CH₃ of ester), -0.23 (t, 3 H, CH₃ of 3-ethyl), -1.42, -2.02 (both s, 2 H, NH); mass spectrum, m/e 634 (M⁺). Anal. Calcd for C₄₁H₅₄N₄O₂·2H₂O: C, 73.43; H, 8.66. Found: C, 73.26; H, 8.66.

Zinc Complex. The zinc complex was prepared as described for the zinc complex of 11 in 92% yield: vis λ_{max} 408, 515, 545, 590, 633 nm (ϵ 145 474, 9858, 5377, 15 832, 59 444). Nickel Complex. The nickel complex was prepared in a

Nickel Complex. The nickel complex was prepared in a similar manner in 86% yield: vis λ_{max} 405, 498, 533, 588, 630 nm (ϵ 145 779, 11 034, 8693, 19 392, 64 146).

Cyclization of meso-[\$-(Ethoxycarbonyl)vinyl]octaethylporphyrin in Air to 14. $meso-[\beta-(Ethoxycarbonyl)$ vinyl]octaethylporphyrin (10) (100 mg) in glacial acetic acid (20 mL) was heated under reflux for 24 h. The solution was cooled. the solvent removed in vacuo, and the residue chromatographed on silica with dichloromethane for elution. The first major green band was collected, the solvent removed, and the crude product crystallized from dichloromethane-methanol to give deep purple microprisms of 14 (40 mg, 40% yield): mp 145–147 °C; vis λ_{max} 438, 510, 540, 583, 653, 715 nm (e 104 158, 9450, 11 130, 15 540, 9020, 42629); ¹H NMR (CDCl₃) δ 9.47, 9.40, 9.00 (all s, 3 H meso H), 9.30 (s, 1 H, H of isocyclic ring), 7.23 (q, 1 H), 4.56 (q, 2 H, CH_2 ester), 3.83 (m, 12 H, CH_2 of peripheral ethyl), 2.50 (d, 2 H, J = 8 Hz, CH=-CH₃). 2.32 (m, 2 H, CH₂ of 3-ethyl), 1.62 (m, 21 H, CH₃ of peripheral ethyl), 0.215 (t, 3 H, CH₃ of 3-ethyl), -0.23, -0.69 (both s, 2 H, NH); mass spectrum, m/e (relative intensity) 630 (M⁺ 100), 601 (79), 534 (43).

Zinc Complex. The zinc complex was prepared by the usual method in 95% yield: vis λ_{max} 430, 543, 593, 630, 680 nm (ϵ 141 532, 6797, 8396, 14 393, 41 180).

A second major green band was also collected, the solvent removed, and the residue crystallized from dichloromethanemethanol to give purple microcrystals of purpurin 11 (39 mg, 39% vield), identical with an authentic sample.

Hydrogenation of 14. Purpurin 14 (100 mg) was hydrogenated under conditions similar to those described above to yield, after workup and chromatographic purification, chlorin 12 (65 mg, 65% yield), identical with an authentic sample.

Acknowledgment. Thanks are due to Bennett C. Borer and Jean L. Ensign for performing MS measurements at the GC/MS Analytical Services Laboratory of Bowling Green State University, OH 43403-0213.

Registry No. 8, 52518-61-3; 9, 99128-87-7; 10, 61354-68-5; 11, 99128-91-3; 11 (Zn complex), 99128-88-8; 12, 99128-93-5; 12 (Zn complex), 99128-89-9; 12 (Ni complex), 99128-90-2; 13, 99147-86-1; 14, 99128-92-4; 14 (Zn complex), 99147-85-0; ethoxycarbonyl methylenetriphenylphosphorane, 1099-45-2.

Micellar Effects on Competitive Hydrolysis and Hydration of Vinylphosphonium Salts

David A. Jaeger* and Durgadas Bolikal

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

Received September 24, 1985

Vinyl phosphonium salts undergo reactions with ^{-}OH in H₂O at C and P to give products of hydration and hydrolysis, respectively.¹ In a study² of phosphate ester hydrolysis under basic conditions catalyzed by micellar 2b, we noted that 1b displayed unusual C vs. P reactivity. Herein, we report a study of micellar effects on this competition with $1a-c.^3$

At 25 °C, 1a in ≤ 1.5 M NaOH yielded only 2a from attack at C and in ≥ 2.0 M NaOH yielded a minor amount of 2a (14%) and a mixture of products including 3a (10%), 4a (16%), 5a (27%), and 6a (17%) from attack at P (Chart I).⁴ Thus, the regiochemistry depends on [$^{-}$ OH]. In contrast, micellar 1b displayed a distinctly different reactivity pattern. Predominant attack occurred at P in [$^{-}$ OH]'s as low as 0.01 M but at C in [$^{-}$ OH]'s ≤ 0.001 M. The former gave a complex mixture containing 3–6 and the latter 2b. The behavior of 1c paralleled that of 1a, so the dependence of 1b's reactivity on [$^{-}$ OH] manifests a micellar rather than a simple substituent effect.

These micellar effects represent a vivid example of the ability of cationic micelles to concentrate anionic reagents relative to the aqueous pseudophase.⁶ Indeed, [^{-}OH] = 1–2 M is estimated⁷ for the Stern layer of micellar 1b in 0.01 M NaOH. For bimolecular reactions, the usual consequences of such concentration are catalysis or inhibition.⁶ The results with 1b represent a rare example of *regio-chemical* consequences.⁸ Indeed, there are only a few other reports⁹ of such regio/chemoselectivity control.

(1) For examples, see: (a) Shutt, J. R.; Trippett, S. J. Chem. Soc. C 1969, 2038. (b) Brophy, J. J.; Gallagher, M. J. J. Chem. Soc., Chem. Commun. 1967, 344.

(2) Jaeger, D. A.; Bolikal, D. J. Org. Chem. 1985, 50, 4635.

(3) In some of the runs described below, $^{-}OD{-}D_{2}O$ instead of $^{-}OH{-}$ $H_{2}O$ was actually used (see Experimental Section).

(4) (a) Shutt and Trippett^{1a} reported that 1a gives 3a, 5a, Ph₃PO, and Ph₃P (but not 4a and 6a) in aqueous 2 M NaOH at reflux. It was proposed that 3a is formed by a rearrangement of 1a, and 5a via the addition of Ph₂PO⁻ to 1a. In the present study, 5a may result directly from the addition of Ph₂PO⁻ to 4a, which is probably formed by a typical quaternary phosphonium salt hydrolysis:^{5a} R₄P⁺-OH \rightarrow R₃PO + RH. (b) Hands and Mercer reported^{5b} that Ph₃P⁺CH₂CH₂OH I⁻ gives (84%) 6a in aqueous KOH at ca. 100 °C. In this study, however, only a minor amount of 6a came from 2a (see Experimental Section); presumably, the majority derived from 4a. Thus, the 14% of 2a fairly represents the maximum amount of initial ⁻OH attack at C.

(5) (a) Hudson, R. F. "Structure and Mechanism in Organo-Phosphorus Chemistry"; Academic Press: New York, 1965; pp 206-210. (b) Hands, A. R.; Mercer, A. J. H. J. Chem. Soc. 1965, 6055.

(6) Bunton, C. A. Catal. Rev.-Sci. Eng. 1979, 20, 1 and references therein.

(7) Bunton, C. A.; Hong, Y. S.; Romsted, L. S. In "Solution Behavior of Surfactants"; Mittal, K. L., Fendler, E. J., Eds.; Plenum Press: New York, 1982; Vol. 2, p 1137. An adaptation of eq 7 was used. Several calculations were made for [1b] = 0.001 M with $K_{\rm OH}^{\rm Br}$ values of 12–21 (those given for hexadecyltrimethylammonium bromide) and β values of 0.6–0.9. It was also assumed that the density of micellar 1b is 1 and that the Stern layer constitutes half of its volume. The CMC assumed for 1b was that determined for 2b.²

(8) Micellar catalysis would also be expected, but reaction kinetics were not studied.

0022-3263/86/1951-1350\$01.50/0 © 1986 American Chemical Society

Regioselectivity effects were found in micellar reactions of $\[OH with N-alkyl-4-cyanopyridinium ions, ^{9a,b} and che$ $moselectivity effects in micellar dediazoniations. ^{9c,d} In$ these and the present study it is possible that mediumeffects also contributed to the observed selectivities sincethe Stern layer of an ionic micelle typically has a dielectricconstant less than that of H₂O and about that ofEtOH/MeOH.¹⁰

Overall, concentration of $\neg OH$ by the Stern layer of micellar 1b in 0.01 M NaOH resulted in regioselectivity that was obtained only at much higher [$\neg OH$]'s with non-micellar analogues.

Experimental Section

General Procedures. ¹H NMR spectra were recorded at 270 MHz with Me_4Si and $Me_3Si(CD_2)_2CO_2Na$ as internal standards in CDCl₃ and D_2O , respectively. Electron-impact high-resolution mass spectra (HRMS) were obtained at 70 eV on a VG-ZAB 1F spectrometer. Elemental analyses were performed by Atlantic Microlab, Atlanta, GA. Recrystallizations were at 25 °C.

Solvents and Materials. D₂O (Aldrich, 99.8% D) and 20 wt % DCl-D₂O (Aldrich, >99% D) were used as received. 1a (Aldrich) was recrystallized from 2:1 (v/v) *t*-BuOH-Et₂O, mp 180-181 °C. 1b² (oil), 2a,¹¹ mp 219-220 °C, and 2b,² mp 84-87 °C (precipitated from MeNO₂ by Et₂O), were prepared by the literature procedures. The critical micelle concentration of 2b is 1.4×10^{-4} M (H₂O),² and that of 1b should be similar.

p-Tolyldiphenylvinylphosphonium Bromide (1c). By a literature procedure, ¹² *p*-MeC₆H₄Ph₂P⁺CH₂CH₂Cl Br⁻/Cl⁻ was

prepared (99%) from 2c: ¹H NMR (CDCl₃) δ 7.52–7.89 (m, 14 H, Ar H), 4.42 (d of t, $J_{P,H} = 11.7$ Hz, $J_{H,H} = 6.2$ Hz, 2 H, CH₂P), 4.02 (d of t, $J_{P,H} = 20.5$ Hz, $J_{H,H} = 6.2$ Hz, 2 H, CH₂Cl), 2.50 (s, 3 H, CH₃). This crude material was converted¹² into 1c and the product recrystallized twice from 10:1 EtOAc-CH₂Cl₂ to give (46%) of 1c: mp 143–145 °C; ¹H NMR (CDCl₃) δ 8.18 (d of d of d, $J_{P,H} = 24.9$ Hz, $J_{H,H-cis} = 12.5$ Hz, $J_{H,H-trans} = 18.0$ Hz, 1 H, PCH), 7.53–7.87 (m, 14 H, Ar H), 7.18 (d of d, $J_{P,H} = 49.8$ Hz, $J_{H,H-cis} = 12.5$ Hz, 1 H, PCH=CH_{cis}H_{trans}), 6.16 (d of d, $J_{P,H} = 25.3$ Hz, $J_{H,H-trans} = 18.0$ Hz, 1 H, PCH=CH_{cis}H_{trans}), 2.51 (s, 3 H, CH₃). Anal. Calcd for C₂₁H₂₀BrP-0.5H₂O: C, 64.29; H, 5.39. Found: C, 64.26, 64.23; H, 5.43, 5.45.

p-Tolyldiphenyl(2-hydroxyethyl)phosphonium Bromide (2c). A mixture of 11.1 g (40.0 mmol) of *p*-MeC₆H₄PPh₂ (Alfa) and 10.0 g (80.0 mmol) of BrCH₂CH₂OH (Aldrich) was held at 100 °C for 1 h under N₂. Volatiles were removed at 80 °C (0.05 mmHg), and recrystallization of the residue from 8:1 EtOAc-EtOH gave 11.5 g (72%) of 2c: mp 146-147 °C; ¹H NMR (CDCl₃) δ 7.46-7.80 (m, 14 H, Ar H), 4.65 (br s, 1 H, OH), 4.06 (d of t, $J_{P,H}$ = 17.6 Hz, $J_{H,H}$ = 6.2 Hz, 2 H, CH₂O), 3.75 (d of t, $J_{P,H}$ = 11.7 Hz, $J_{H,H}$ = 6.2 Hz, 2 H, CH₂P), 2.48 (s, 3 H, CH₃). Anal. Calcd for C₂₁H₂₂BrOP: C, 62.86; H, 5.53. Found: C, 62.89; H, 5.56.

(Oxydiethylene)bis[triphenylphosphonium] Dibromide (7). A solution of 0.74 g (2.0 mmol) of 1a in 50 mL of H_2O was added during ca. 10 s to a solution of 0.78 g (2.0 mmol) of 2a in 50 mL of 0.2 M NaOH at 25 °C under N₂. After 1 min, the reaction mixture was acidified with 3.0 mL of concentrated hydrobromic acid and extracted with three 50-mL portions of CHCl₃. The combined extracts were dried (Na₂SO₄) and rotary evaporated to give 1.45 g of crude material that was column chromatographed on silica gel packed in CHCl₃ with MeOH-CHCl₃ elution. 7 (430 mg) eluted with 10% MeOH-CHCl₃, and recrystallization from 10:1 EtOAc-CH₂Cl₂ gave 250 mg (21%) of 7: mp 248-249.5 °C; ¹H NMR (CDCl₃) δ 7.74-7.78 (m, 30 H, Ar H), 3.90 (br m, 8 H, CH₂CH₂). Anal. Calcd for C₄₀H₃₈Br₂OP₂·H₂O: C, 62.03; H, 5.21. Found: C, 61.91, 61.84; H, 5.10, 5.12.

Reactions of 1a in Aqueous Base. To 0.25 mL of 0.02 M 1a in D₂O at 25 °C was added 0.25 mL of 0.20 M NaOD-D₂O. After a given time at 25 °C, the solution was acidified with 1 drop of 20 wt % DCl-D₂O and analyzed by ¹H NMR. With a 30-min reaction time, the product mixture contained 83% Ph₃P⁺-CD₂CH₂OD Br⁻/Cl⁻ (2a-d), 10% (Ph₃P⁺CD₂CH₂)₂O 2Br⁻/Cl⁻ (7-d), and 7% Ph₃P⁺CD=CH₂ Br⁻/Cl⁻ (1a-d). With reaction times of 2-24 h, only 2a-d was detected.

By the above procedure, reaction mixtures were prepared at 25 °C by the addition of 0.25 mL of 0.02 M 1a in D_2O to each of 0.25 mL of 1.0, 2.0, 3.0, 4.0, and 5.0 M NaOD- D_2O . After 10 min at 25 °C, each solution was acidified with 5 drops of 20 wt % DCl- D_2O and analyzed by ¹H NMR. The first three solutions remained clear, and only 2a-d was detected. The last two solutions became turbid several seconds after preparation and contained a complex mixture including benzene and 2a-d. Analogous runs with 1c gave similar results.

Under N_2 , a reaction mixture prepared by the addition of 200 mL of 5.0 M NaOH to a solution of 1.47 g (4.00 mmol) of 1a in 200 mL of H₂O was stirred at 25 °C for 30 min and cooled to 5 °C. After the addition of 120 mL of concentrated hydrochloric acid and 80 g of NaCl, the reaction mixture was extracted with three 100-mL portions of CHCl₃. The combined extracts were dried (Na₂SO₄) and rotary evaporated, and the crude product was chromatographed on basic alumina (Fisher, Brockman Activity 1) packed in Et₂O with Et₂O-MeOH elution. 3a (117 mg, 10%) eluted with 1% MeOH-Et $_2O$ and was recrystallized from cyclohexane: mp 156-158 °C (lit.^{1a} mp 140-141 °C); ¹H NMR (CDCl₃) δ 7.17–7.94 (m, 15 H, Ar H), 3.60 (d of q, $J_{P,H}$ = 8.1 Hz, $J_{H,H}$ = 7.3 Hz, 1 H, CH), 1.58 (d of d, $J_{P,H} = 16.1$ Hz, $J_{H,H} = 7.3$ Hz, 3 H, CH₃); HRMS, calcd for C₂₀H₁₉OP 306.1173, found 306.1167. 4a (145 mg, 16%) eluted with 2% MeOH-Et₂O and was recrystallized from 5:1 hexane-EtOAc: mp 114-115 °C (lit.^{1a} mp 114-115 °C). 5a (232 mg, 27%) eluted with 3% MeOH-Et₂O and was recrystallized from 5:1 EtOAc-CH₂Cl₂: mp 264-266 °C (lit.^{1a} mp 268-270 °C). 6a (168 mg, 17%) eluted with 10% MeOH-Et₂O and was recrystallized from 2:1 hexane-EtOAc: mp 92-93 °C (lit.5b mp 94.5-95.5 °C). Ph₃P⁺CH₂CH₂OH Cl⁻ (196 mg, 14%) eluted with 50% MeOH-Et₂O and was recrystallized from EtOH: mp 234-236 °C (lit.¹³ mp 233 °C).

^{(9) (}a) Politi, M.; Cuccovia, I. M.; Chaimovich, H.; de Almeida, M. L. C.; Bonilha, J. B. S.; Quina, F. H. Tetrahedron Lett. 1978, 19, 115. (b) Bonilha, J. B. S.; Chiericato, G., Jr.; Martins-Franchetti, S. M.; Ribaldo, E. J.; Quina, F. H. J. Phys. Chem. 1982, 86, 4941. (c) Moss, R. A.; Dix, F. M.; Romsted, L. J. Am. Chem. Soc. 1982, 104, 5048. (d) Singer, R.; Eibler, E.; Sauer, J. Tetrahedron Lett. 1962, 23, 1135. There have been other reports of micellar/microemulsion regioselectivity control involving an anionic reagent (BH₄⁻), but the importance of concentration effects was not determined: Nikles, J. A.; Sukenik, C. N. Tetrahedron Lett. 1982, 23, 4211. Jaeger, D. A.; Ward, M. D.; Martin, C. A. Tetrahedron 1984, 40, 2691.

^{(10) (}a) Mukerjee, P.; Cardinal, J. R.; Desai, N. R. In "Micellization, Solubilization, and Microemulsions"; Mittal, K. L., Ed.; Plenum Press: New York, 1977; Vol. I, p 241. (b) Sudhölter, E. J. R.; van de Langkrius, G. B.; Engberts, J. B. F. N. Recl. Trav. Chim. Pays-Bas 1980, 99, 73.

⁽¹¹⁾ Seyferth, D.; Fogel, J. J. Organomet. Chem. 1966, 6, 205.

Reactions of 1b in Aqueous Base. To 0.25 mL of 0.02 M 1b in D_2O was added 0.25 mL of pH $11^{14}\,0.10$ M carbonate buffer in D₂O. After 25 min at 25 °C, only p-n- $C_{12}H_{25}C_6H_4Ph_2P^+$ - $CD_2CH_2OD Br^-$ (2b-d) and/or $(p-n-C_{12}H_{25}C_6H_4Ph_2P^+CD_2CH_2)_2O$ 2Br⁻ were detected by ¹H NMR. The same result was obtained with the substitution of pH 10 0.10 M carbonate buffer in D_2O . With extended reaction times, conversion to 6a/6b is likely, analogous to that of 1a to $6a.^{\rm 4b,5b}$

A reaction mixture was prepared from 1.0 mL of 0.02 M NaOD-D₂O and 1.0 mL of 0.002 M 1b in D₂O. After 3 min at 25 °C, an oil had precipitated, and the reaction mixture was acidified with 20 wt % DCl-D₂O. By ¹H NMR, no organic material was detected in the supernatant solution. The oil was washed with H₂O and dried under vacuum; its ¹H NMR spectrum (CDCl₃) was similar to that of the crude product obtained from 1b in 0.1 M NaOH.

As above for 1a, 0.27 g (0.50 mmol) of 1b in 25 mL of H_2O was treated with 25 mL of 0.2 M NaOH. The 0.20 g of crude product was chromatographed on basic alumina packed in Et₂O with MeOH-Et₂O elution. 4b and 3b/3c (7:1 mol ratio, 91 mg, 45%) eluted together with 1% MeOH-Et₂O. 4a^{1a} (13 mg, 11%) eluted with 1% MeOH-Et₂O. **5b** (trace) and **5c** (21 mg, 11%) eluted with 3% MeOH-Et₂O. 6a (trace), 6b, and p-n- $C_{12}H_{25}C_6H_4Ph_2P^+CH_2CH_2OH \ Cl^-/Br^-$ (2:1, 22 mg, 10%) eluted with 10-50% MeOH-Et₂O. 5a was not detected. New compounds were identified by ¹H NMR in comparison with analogues from 1a and by HRMS. 3b/3c: calcd for $C_{32}H_{43}OP$ 474.3051, found, 474.3032. 4b: calcd for C₂₆H₃₇OP 396.2581, found 396.2551. 5b: calcd for $C_{38}H_{48}O_2P_2$ 598.3128, found 598.3083. 5c: calcd for $C_{50}H_{72}O_2P_2$ 766.5007, found 766.4990. 6a: calcd for $C_{14}H_{15}O_2P$ 246.0810, found 246.0818. 6b: calcd for C₂₆H₃₉O₂P 414.2688, found 414.2686

Stability of 2a in Aqueous Base. To 0.25 mL of 0.02 M 1a was added 0.25 mL of 5.0 M NaOD-D₂O. After 30 min at 25 °C, the solution was acidified with 20 wt % DCl-D₂O. By ¹H NMR it contained ca. 10% Ph₂P(O)CD₂CH₂OD (6a-d), with the remainder being 2a-d.

Reaction of 1c in Aqueous Base. As for 1a, 0.77 g (2.0 mmol) of 1c in 100 mL of H₂O was treated with 100 mL of 5.0 M NaOH. The 0.80 g of crude product was chromatographed on basic alumina packed in Et₂O with MeOH-Et₂O elution. 3b and 3c (1:1 mol ratio, 93 mg, 14%) eluted with 1% MeOH-Et₂O. $4a^{1a}$ (trace) and 4b (132 mg, 27%) eluted with 2% MeOH-Et₂O. 5b (trace) and 5c (144 mg, 31%) eluted with 3% MeOH-Et₂O. $6a^{5b}$ (trace) and 6b (16 mg, 3%) eluted with 10% MeOH-Et₂O. $MeC_6H_4Ph_2P^+CH_2CH_2OH Cl^-/Br^-$ (52 mg, 7%) eluted with 50% MeOH-Et₂O. 5a was not detected. New compounds were identified by ¹H NMR in comparison with analogues from 1a and by HRMS. 3b/3c: calcd for $\hat{C}_{21}H_{21}OP$ 320.1330, found 320.1315. 4b: calcd for C₁₅H₁₅OP 242.0860, found 242.0844. 5b: calcd for $C_{27}H_{26}O_2P_2$ 444.1407, found 444.1395. 5c: calcd for $C_{28}H_{28}O_2P_2$ 458.1564, found 458.1554. 6b: calcd for C₁₅H₁₇O₂P 260.0966, found 260.0986.

Acknowledgment is gratefully made to the U.S. Army Research Office and the Marathon Oil Company.

Registry No. 1a, 5044-52-0; 1a-d, 7237-37-8; 1b, 98482-65-6; 1c, 100449-69-2; 2a, 7237-34-5; 2a-d, 100449-72-7; 2b-d, 100466-22-6; 2c, 100449-71-6; 3a, 23896-93-7; 3b, 100449-76-1; 3c, 100449-77-2; 4a, 2096-78-8; 4b, 100449-75-0; 5a, 4141-50-8; 5b, 100449-78-3; 5c, 100466-23-7; 6a, 887-21-8; 6a-d, 100449-80-7; 6b, 100466-24-8; 7, 5368-62-7; 7-d, 100449-73-8; p-MeC₆H₄Ph₂P⁺-CH₂CH₂Cl,Br⁻, 100449-70-5; p-MeC₆H₄Ph₂P⁺CH₂CH₂Cl,Cl⁻, 100449-82-9; p-MeC₆H₄PPh₂, 1031-93-2; BrCH₂CH₂OH, 540-51-2; $\begin{array}{c} \text{CD}_2\text{CH}_2\text{OD},\text{Cl}^-, \quad 100449\text{-}85\text{-}2; \quad (p\text{-}n\text{-}\text{C}_{12}\text{H}_2\text{5}\text{C}_6\text{H}_4\text{Ph}_2\text{P}^+\text{-}\\ \text{CD}_2\text{CH}_2)_2\text{O},2\text{Br}^-, \quad 100449\text{-}74\text{-}9; \quad p\text{-}n\text{-}\text{C}_{12}\text{H}_2\text{5}\text{C}_6\text{H}_4\text{Ph}_2\text{P}^+\text{-}\\ \text{CH}_2\text{CH}_2\text{OH},\text{Cl}^-, \quad 100449\text{-}79\text{-}4; \quad p\text{-}\text{MeC}_6\text{H}_4\text{Ph}_2\text{P}^+\text{CH}_2\text{CH}_2\text{OH},\text{Cl}^-, \\ \end{array}$ 100449-81-8.

Ester Cleavage by a Phenolic Quaternary **Phosphonium Surfactant**

David A. Jaeger* and Durgadas Bolikal

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

Received October 7, 1985

Numerous functionalized surfactants have been used to catalyze the hydrolysis of carbon and phosphorus esters.¹ Most of these have been quaternary ammonium systems. Previously, we described² the first functionalized quaternary phosphonium surfactants, and herein we report the synthesis and application of additional examples 1-3.

Reaction of p-MeOC₆H₄PPh₂ with n-C₁₆H₃₃Br gave 3, which was converted to 1 with hydrobromic acid. Acetylation of 1 with MeCOCl yielded 2. By UV and ³¹P NMR methods, micellar 1 has a pK_a of 6.6. Thus, the p-C₁₆H₃₃Ph₂⁺P substituent and micellization³ combine to give an acidity enhancement of ca. 3 pK_{a} units relative to phenol (9.86).

Phenolic 1 in comicellar form with hexadecyltrimethylammonium bromide (HTABr) was used as a catalyst for hydrolyses of p-nitrophenyl acetate (4) and sodium 4-acetoxy-3-nitrobenzenesulfonate (5), and the results are summarized in Tables I and II. 1's solubility characteristics precluded its use alone.

In pH 9 buffer with [1] = [HTABr] = 0.001 M, the pseudo-first-order rate constant (k_{ψ}) for hydrolysis of 4 is 2.7×10^{-3} s⁻¹ (entry 1). Compared to reactions with 3 substituted for 1 (entry 2), with [HTABr] = 0.002 M (entry 3), and without surfactant (entry 4), that with 1 is 2.7, 5, and 13 times faster, respectively. These facts are consistent with the involvement of 1a in nucleophilic attack on micellar bound 4 to give 2 (eq 1), which can undergo deacy-

$$1a + 4(5) \rightarrow 2 + p \cdot NO_2C_6H_4O^{-}[4 \cdot (Na^{+-}O_3S) \cdot 2 \cdot NO_2C_6H_3O^{-}]$$
(1)

$$2 \xrightarrow[H_2O]{OH} 1a + MeCO_2^{-}$$
(2)

lation to regenerate 1a (eq 2). At pH 9, 1 is >99% ionized to 1a. The reaction of eq 2 was performed independently with [2] = 0.0001 M and [HTABr] = 0.002 M, and k_{ψ} = 5.4×10^{-3} s⁻¹ resulted (entry 5). Comparison of entries 1 and 5 suggests that 2 decomposes faster than it is formed under the conditions of the former, i.e., that 1 is a turnover catalyst.⁵ A conclusive demonstration of 1's turnover capability with [4] > [1] = 0.001 M was precluded by 4's limited solubility. Furthermore, lower [1]s could not be

⁽¹³⁾ Aksnes, G. Acta Chem. Scand. 1961, 15, 438.

⁽¹⁴⁾ This and the pH 10 value below were calculated for the corresponding protio systems.

⁽¹⁾ For a summary and examples, see: Moss, R. A.; Ihara, Y. J. Org. Chem. 1983, 48, 588 and references therein.
(2) Jaeger, D. A.; Bolikal, D. J. Org. Chem. 1985, 50, 4635.
(3) For other Nakai, and a discussion of such acidity enhancement, see:

 ⁽d) For our relation in a discussion of source of the second secon

⁽⁵⁾ For recent examples of functionalized surfactants which perform

as turnover catalysts in ester hydrolysis, see: (a) Menger, F. M.; Whitesell, L. G. J. Am. Chem. Soc. 1985, 107, 707. (b) Moss, R. A.; Alwis, K. W.; Shin, J.-S. Ibid. 1984, 106, 2651.